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Section 1: Introduction

1. The Australian Bureau of Statistics (ABS) uses an enhanced version of the 
X-11 Variant of the Census Method II Seasonal Adjustment Program (Shiskin et. al, 
1967).  The X-11 method applies moving average techniques to decompose the 
time series into estimates for the trend, seasonal and irregular components. 

2. A linear filter with symmetric weights (ie. a symmetric filter) has many 
desirable properties for seasonal adjustment.  However, symmetric filters cannot be 
applied at the ends of a time series.  The standard X-11 uses asymmetric filters to 
solve this problem.  Asymmetric filters are often designed with assumptions about 
certain properties of the missing observations. ie. forecasts are implicitly applied.  As 
a result of the forecasting, revisions will occur between the first few estimates of the 
seasonal factors and trend at a particular time point and the final trend estimate 
which is calculated using a symmetric moving average.  The problem of the 
revisions derived from the application of asymmetric filters is often called the 
"end-weight" problem.

3. Revisions resulting from the applications of asymmetric filters are necessary 
to improve seasonal adjustment estimation as more data becomes available. 
However, revisions are undesirable and methods to  minimise them are an ongoing 
research pursuit for the ABS.  A better forecast of the missing observations can lead 
to a reduction in the revisions of the seasonal adjustment estimates.

4. Assuming the symmetric filters used in X-11 are satisfactory,  the purpose of 
this paper is to investigate the possibility of reducing the "end-weight" problem by 
using X-11 with ARIMA extensions.   In this paper, we

evaluate the fitting performance of a set of the most often applied ARIMA 1.

models;

confirm that a reduction in revisions is achieved when using ARIMA 2.

forecasting instead of  the asymmetric filters in the standard X-11;

identify the conditions under which an ARIMA performs better than the 3.

standard X-11.



5. To achieve these goals a range of ABS time series (820 series) have been 
used.  Our research showed that:

In comparison with the standard X-11, on average, an ARIMA model 1.
achieves 6-7%  reduction in revision to the first seasonally adjusted 
estimate;

The average absolute percentage change in irregulars (denoted by 2.
STAR) is the most powerful statistical measure to predict the possible 
revision size;
 
The ratio of the average absolute percentage change in the irregular 3.
component and the average absolute percentage change in the X-11 
trend (denoted by I/C) is the most powerful statistical measure to indicate 
when an ARIMA model is likely to be better than the standard X-11. The 
larger the I/C, the better an ARIMA model performs over the standard 
X-11.

6. This report is organised as follows. Section 2 gives a short literature review of 
the "end-weight" problem. Section 3 presents a comparison of the revisions from the 
standard X-11 versus X-11 with ARIMA extension. Section 4 presents statistical 
analyses aimed at identifying how the revision is related to a set of common 
statistical measures, and which measures are most likely to predict if X-11 with 
ARIMA extension can produce less revision than the standard X-11. Our 
conclusions, recommendation and future research directions are discussed in 
Section 5.



Section 2: Background

7. X-11 is a seasonal adjustment package developed by the US Bureau of the 
Census in the 1950's and 1960's (Shiskin et. al 1967, Ladiray and Quenneville 
2001).  X-11 uses moving averages to decompose a time series into estimates of 
the trend, seasonal and irregular components.  The trend and seasonal components 
use their own set of symmetric and asymmetric moving averages (filters) to calculate 
estimates in the middle and at the ends of the data.   The details are outlined in 
Table 1.

Table 1: Moving averages (filters) used in the X-11 seasonal adjustment package.

Trend Seasonal
symmetric The symmetric moving 

averages used to estimate 
the trend component are 
calculated using the 
Henderson moving average 
(Henderson, 1916) and the 
length of the filter is 
determined by a relative 
variation measure of the 
irregular and trend.

The symmetric moving 
averages used for the 
seasonal are based on 
convoluted simple moving 
averages eg. 3x5, 3 term of 
a 5 term simple moving 
average (Dagum, 1996). 
The "optimal" length of the 
seasonal filter is 
determined by a relative 
variation measure of the 
irregular and seasonal.

asymmetric The asymmetric moving 
averages used for the ends 
of the trend are calculated 
using a simple linear model 
developed by Musgrave 
(Doherty, 1992).

The asymmetric moving 
averages for the seasonal 
moving averages are based 
on an unknown and 
undocumented 
methodology (see Appendix 
B for more details). 

8. There are two broad categories of methods to improve the revision 
("end-weight") problem: (1) improvement of asymmetric filters (Gray and Thomson 
1996a 1996b 1996c, McLaren and Steel 1998, Quenneville and Ladiray 2000), and 
(2) forecast the missing data using more advanced time series dynamic models. The 
latter approach is used for this report.  

9. The use of asymmetric filters results in the revision of initial estimates of the 
seasonally adjusted and trend as subsequent data points are added to the time 
series. The class of asymmetric filters in X-11 use implicit static forecast formulae. 
The optimal choice of an asymmetric filters is determined by the statistical 
characteristics of the time series. These characteristics are typically the average 
absolute percentage changes in irregular/seasonal (denoted by I/S) and the average 
absolute percentage changes irregular/trend (denoted by I/S). Therefore, the 
asymmetric filter approach used in X-11 is a semi-dynamic model in that the implicit 
forecast formulae are not completely dependent on the nature of the time series. For 



a further discussion of the asymmetric filter see Appendix B.

10. Statistics Canada developed X-11-ARIMA in the 1970's and 1980's in an 
effort to reduce revisions. X-11-ARIMA uses Box and Jenkins ARIMA modelling 
(Box and Jenkins 1970, Dagum 1980) to forecast the original missing data points. 
Quenneville and Ladiray (2000) use models to forecast missing seasonally adjusted 
estimates and then apply the symmetric Henderson filter to produce trend estimates. 
The ABS evaluated X-11-ARIMA in the 1980's but found too many series were not 
automatically modelled by the package. It is concluded that X-11-ARIMA was not 
suitable for mass production of ABS seasonal adjustment.  The US Bureau of the 
Census has recently released X-12-ARIMA (Findley et. al 1998), and also adopted 
ARIMA modelling to predict missing data points.  X-12-ARIMA includes a 
regression-ARIMA component to estimate a range of data contamination effects. 

11. This analysis uses the ABS seasonal adjustment package SEASABS (ABS, 
1999) to clean the time series of any abrupt changes in the trend and seasonal 
components, trading day, large extremes and numerous other possible effects.  
X-12-ARIMA was then used to fit and evaluate the ARIMA extension method to 
improve the "end-weight" problem. We evaluated the revision properties of the first 
seasonally adjusted estimates. 

12. All series evaluated were seasonally adjusted directly. In practice, many ABS 
series are seasonally adjusted then aggregated to form an indirect seasonally 
adjusted estimate at a higher level.



Section 3: Comparison of revisions between X-11 and different ARIMA options

13. The performance of the following four ARIMA modelling options were 
compared using X-12-ARIMA:
 

the standard X-11 (using asymmetric filters)1.
the "airline" ARIMA model (dynamic model)2.
"super model" (static ARIMA model, see Appendix C for details) with 3.
prefixed parameters 
automatic selection of ARIMA model (see Appendix D).4.

14. These options let us to evaluate the performance of 
a common dynamic ARIMA model (ie. the "airline" model), an  empirical �

static  ARIMA  (ie. the "super" model) in comparison with the standard 
X-11, and 
an "optimal" ARIMA model, which is automatically selected by the default �

model selection procedure in X-12-ARIMA (see Appendix D for more 
details),  in comparison with the common "airline" model.

The result of such comparisons will provide a clear and insightful picture of the 
strengths and weaknesses of the different "end-weight" methodologies.
 
Additional investigations were performed using the "outlier" modification of 
regression-ARIMA  in X-12-ARIMA. 

15. The desired properties of revisions are: 

The first seasonally adjusted and trend estimates (ie. the estimates 1.
produced when the time period of interest is the last in the series) are as 
close as possible to the final estimates when more observations are 
added to the series (this may be some years after the initial data point was 
first added to the series).
The seasonally adjusted and trend estimates subsequent to the first 2.
estimate converge as quickly and smoothly as possible to the final 
estimates. 

16. Revisions are calculated by simulating monthly (or quarterly) updates of 
historical data over a specific time span. The revision measure used in this paper is 
the mean absolute percentage revision in the level of seasonally adjusted estimates 
from the first to the final estimate. This is denoted by R0 and defined as 
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given date τ (t ≤ τ); T is the end date of the original series;  t0 is the start date of the 
original series minus seven years data (t0 = SD - 84 for monthly series or SD - 28 for 

quarterly series; T0  is less than or equal to T minus three years data (T0  ≤ T - 36 for 
monthly series or T - 12 for quarterly series);  The generic form of this measure can 



be found in Appendix E.    

17. To compare the performance of ARIMA options against the standard X-11,  
the percentage of revision ratio, RR = 100xR0(ARIMA)/R0(X11),  between the ARIMA 
option to the standard X-11 has been found most effective. For example, 100 would 
mean that the ARIMA option and standard X-11 performed equally with regard to 
revisions, while 90 would mean the ARIMA option was 10% better than the standard 
X-11. 

18. Table 2 summarises the results from a total of 820 time series from a variety 
of different sources. In general the "airline" model consistently outperforms the 
standard X-11 with an overall reduction in revisions about 6-7%.  This is in spite of 
the fact that the  "airline" model may not pass the rigorous model selection criteria. 
The static "super model" also outperforms X-11 overall. This implies that the 
forecast models implicitly embedded in the asymmetric filters of the standard X-11 
generally lead to larger revisions than the "airline" and "super" model.

19. For the three X-11 with ARIMA extension (airline, super, automatic) seasonal 
adjustments,  the use of the regression-ARIMA outlier removing option resulted in 
small gains averaging between 1.5% and 2.8%.  However, the trade off was 
increased variability as measured by standard deviations of R0.

20. In calculating the statistics for the automatic ARIMA model selection 
approach (with and without outlier options), all series which failed to meet the model 
fitting criteria were excluded.  The automatic procedure fitted an ARIMA model for 
576 (ie. 70.2%) of the series.  Of these, 101 series (ie 17.5%) performed worse than 
the standard X-11. The general performance of the automatic model selection option 
using X-12-ARIMA (see Appendix E for more details) is almost the same as the 
"airline" model.  A general conclusion is that for Australian data, the sophistication of 
choosing a "best" ARIMA model is generally no better than just choosing the simple 
"airline" model (see Appendix F for more detailed comparisons between the 
performances of the "airline" and automatic models).  



Table 2: Means, medians and standard deviations for ARIMA/X11 revision ratio (%)
ARIMA/X11 revision ratios- group mean (medians in brackets ) 

and standard deviations below
Group number of 

series 
analysed 
in group

airline airline with 
outlier 
option  

super
model

super 
model with 

outlier 
option

automatic 
model 

automatic 
model with 

outlier 
option

fitted by 
auto 

model: 
RR < 100
RR > 100

auto fit 
(as%)

Selected 
sub-

sample
(1)

97 90.5  
(90.2)

8.5

88.2 
(88.6)

9.0

94.5 
(92.6)
12.1

91.4 
(90.4)
11.9

91.7
(93.0)

7.6

92.1
(93.0)
10.3

43
3

47.4%
Labour 
force

258 94.0 
(93.6)

7.3

92.5 
(92.1)

7.3

97.6 
(96.3)

8.4

95.3 
(94.3)

8.4

93.5
(94.1)

7.0

92.7
(93.6)

7.0

180
32

82.2%
Retail 202 93.1 

(93.4)
6.3

92.3 
(91.1)

7.5

93.4 
(97.9)

6.1

91.5 
(93.3)

8.1

93.7
(93.6)

6.4

93.3
(93.7)

7.5

137
28

81.7%
Building 
activity 

174 94.0 
(93.4)

8.4

90.9 
(91.4)
11.3

104.6 
(102.7)

13.7

 101.9 
(99.6)
16.2

94.9
(94.2)

7.7

92.3
(92.5)
10.2

70
20

51.7%
Survey of 
employme
nt & 
earnings 

67 93.8 
(92.5)

8.2

82.8 
(83.7)
14.7

95.8 
(94.8)

8.1

84.6 
(86.8)
17.2

94.7
(93.6)

7.0

83.3
(83.4)
16.6

44
11

82.1%

Meat 42 89.3 
(88.7)

5.0

89.3 
(87.8)

5.3

89.6 
(90.3)

5.5

88.8 
(89.0)

5.2

88.5
(88.9)

5.7

97.0
(96.7)

9.5

15
0

35.7%
New motor 
vehicle 
reg.

27 93.6 
(92.8)

4.2

93.5 
(92.6)

3.9

94.2 
(94.2)

4.1

93.6 
(94.1)

4.6

93.4
(91.9)

4.0

97.4
(99.1)

5.0

8
1

33.3%
Profits 20 103.2 

(104.6)
10.9

96.5 
(99.9)
17.8

101.5 
(99.3)
13.5

100.7 
(100.7)

23.5

97.1
(97.5)
12.1

88.2
(88.1)
15.8

4
4

40%
Stocks 
and Sales

15 99.4 
(99.4)
12.1

94.0 
(99.4)
16.9

104.9 
(106.8)

12.4

103.4 
(105.4)

18.8

97.3
(95.2)

8.5

95.0
(94.8)
15.8

7
4

73.3%
Job adds 8 96.7 

(100.8)
8.4

94.4 
(97.8)

8.1

100.9 
(104.5)

9.2

99.1 
(103.1)

8.3

91.4
(89.7)

9.0

85.4
(83.5)

4.1

5
1

75%
Wine 7 89.7 

(90.6)
4.4

89.8 
(90.5)

4.5

91.5 
(91.2)

5.1

91.3 
(91.2)

5.5

88.6
(87.4)

4.9

90.4
(89.4)

6.3

5
0

71.4%

Total
(2)

820
(3)  93.8 

(93.2)
7.7

 91.3 
(91.7)

9.9

 97.6 
(95.3)
10.3

 94.8 
(93.5)
12.9

93.8
(93.6)

7.1

92.3
(93.2)

9.7

475
101

70.2%
Notes:

The selected sub-sample was formed by selecting series with a broad range of characteristics 1.
from the total set of analysed series.
Total excludes the selected sub-sample.2.
Percentages refer only to the number of series that did not fail.3.



Section 4: Which statistical measures can predict if X-11 with ARIMA 
extension can produce less revision than the standard X-11.

21. This section addresses three questions:

Is the revision related to a set of common statistical measures?1.
Does the X-11 with ARIMA extension (eg. the "airline" model) always 2.
perform better than the standard X-11 for any time series?
Under what circumstances does the standard X-11 perform better than 3.
ARIMA models? What are the characteristics of a time series that can 
predict this?

22. A selection of five measures is given in Table 3. All of the measures are 
quantitative measures of the volatility of a series. Different measures provide 
information on the volatility of a series from different perspectives. The STAR value 
measures the volatility of series in the irregular component of a series; I/C and I/S 
ratio considers the trend and seasonality of a series; TP measures the frequency of 
cycles of a series rather than its smoothness; and Pouts is a particular measure of 
the number of outliers in a series which may affect the ARIMA performance. 

Table 3: Different measures used within the ABS.
Measure Description Source

STAR     
A value represents the average absolute percentage change in the irregular 
(residual) component of a series. 

SEASABS

I/C
 A ratio of the average absolute percentage change in the irregular 
component and the average absolute percentage change in the X-11 trend. 
For an additive series it is the ratio of the average absolute change rather 
than percentage change in both cases.  

SEASABS

I/S
A ratio of the average absolute percentage change in the irregular 
component and the average absolute percentage change in the X-11 
seasonal factors. For an additive series it is the ratio of the average absolute 
change rather than percentage change in both cases

SEASABS

TP
An indicator measuring the number of turning points in a series. In 
calculating this measure, we used the trend component of the series and 
calculated the 10 year average number of turning points for comparability 
among all series. 

Created

Pouts
A ratio measuring the proportion of total number of outliers over total number 
of observations in a series. The outliers in a series are defined by X-11 
SEASABS.

Created



23. We used binary tree recursive partition regression and simple regression 
(with non-linear transformation) to explore the relationships between the revision 
measure R

0
 (generated by the standard X-11, and X-11 with ARIMA extensions) and 

the five statistical measures.  All of the analyses consistently suggest that the STAR 
measure is the most significant predictor (with explanatory power of R

2
 > 0.9+)  for 

the revision size of the three seasonal adjustment methods (the automatic model 
method is excluded because for 30% the series, X-12-ARIMA could not find a 
suitable ARIMA model) although all five measures have statistically significant 
effects (see Appendix G for more details). The result is intuitive in that the higher the 
measure of volatility, the larger the revisions. This is shown in Figure 1.

Figure 1: Relation between mean absolute percentage revision in the seasonally adjusted 
estimates from the first to the final estimate (R0) and STAR
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24. Figure 1 shows that the revisions from the "airline" model tend to be smaller 
than the standard X-11 when the STAR value increases.  

25. As the focus of the paper is on the relative performance of ARIMA methods to 
X11,  we further investigated the possible statistical  relationships between the 
percentage revision gain (defined as RR - 100) and the five measures. Figure 2 
shows the distributions of the revision gains of the "airline" and "super" model and 
the five measures. 



Figure 2: Empirical distributions 
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26. The skewed distributions of I/C and STAR suggest a logarithmic 
transformation is required when a linear regression analysis is performed.  The three 
analyses (see details in Appendix G) of binary tree recursive partition of regression,  
transformed linear regression and logistic regression consistently show that the I/C 
is the most significant measure to predict the revision gains, followed by the STAR 
measure. The rest of the measures are not significant or inconclusive to the revision 
gains from the "airline" and "super" models. Table 4 shows the results of the linear 
regression fitting RR-100 to log(STAR), log(I/C) and I/S.



Table 4: Estimated model: RR - 100 = a + b log(STAR) + c log(I/C) + d (I/S)
Airline Model Super Model
a:  -4.264   (-10.715*) a:  1.228      (2.531*)
b:  -0.935   (-3.342*) b:  -0.955     (-2.802*)
c:   -2.714  (-7.212*) c:  -7.101     (-15.483*)
d: not significant for this model d:   2.928      (9.240*)

R
2
: 0.0834 R

2
: 0.254

Correlation of coefficients:
              a                 b
b      -0.6553            
c      -0.2776     -0.1270

Correlation of coefficients:
              a                  b               c     
 b     -0.1900                    
 c       0.0327     -0.1250        
 d     -0.9531     -0.0087      -0.1218
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27. The estimated coefficients in Table 4 demonstrate that  X-11 with ARIMA 
performs better than the standard X-11 when the I/C and STAR values increase.  
The estimated coefficients of STAR from the two ARIMA models are very close. This 
indicates that STAR measure has a relative consistent effect on the revision gain.  

28. More importantly, the I/C is the most significant measure.  The negative 
coefficients of I/C in Table 4 suggest that the larger I/C, the better ARIMA are 
models than the standard X-11. The "airline" model is likely to have less revision 
when I/C is greater than 0.1675 (ie. log(I/C) is greater than -1.787 (see Graph  A13 
in Appendix G)).  The "super" model is likely to have less revision when I/C is 
greater than 1.047 (ie.  when log(I/C) is greater than  0.0464 (see Graph  A16 in 
Appendix G)).  For the total 820 series, there are 816 (99.9%) and 616 (75%) series 
having I/C values greater than 0.1675 and 1.047 respectively.  This implies that the 
asymmetric trend filter, which is derived from the I/C value, used in the X-11 
performs better than the two ARIMA models only when the I/C is extremely small (ie. 
the movements of the seasonally adjusted series are dominated by the trend 
movements). 

29. The positive coefficient of I/S in Table 4 show that this measure has a positive 
effect on RR-100 (although it is not significant for the "airline" model). This suggests 
that the implied seasonal component model embedded in the ARIMA model may not 
perform as well as the X-11's seasonal asymmetric filter when a series is volatile 
and has less seasonal pattern changes.  



30. As discussed above,  given a fixed noise level (ie. a fixed STAR) of a series, 
a suitable ARIMA model is likely to perform better than the standard X-11 when a 
series has less trend movement (ie. large I/C) and large seasonal pattern change 
(ie. small I/S). In other words, the noisier the series the better ARIMA model 
performs than the standard X-11 if a suitable ARIMA model can be found.

31. A dynamic ARIMA model is a global model using a reasonable length of 
series to predict missing observations. The Musgrave asymmetric trend filter used in 
the standard X-11 is a local linear model using only the last few observations with a 
global parameter I/C to predict missing observations. Under a large I/C,  a suitable 
ARIMA model is more likely to provide a better general indication of the trend 
movement while the Musgrave asymmetric filter tends to bend the trend movement 
towards zero. In addition a suitable ARIMA model is also likely to be more adaptive 
to seasonal pattern changes than the implied forecast formulae of asymmetric 
seasonal filters (see details in Appendix B).  

32. Based on our results, and earlier results of Statistics New Zealand (Statistics 
New Zealand, 2000), it is possible that ARIMA modelling  is better than the X-11 
asymmetric filters  when a time series is more volatile (large I/C and STAR) and 
strong in seasonal movement (small I/S), or vice versa.  



Section 5: Conclusions and future directions

33. We used the dynamic "airline" and static "super" ARIMA models to show that 
the implied forecast model of the asymmetric filter in the standard X-11 does not 
perform as well as the ARIMA models in terms of revisions to the seasonally 
adjusted estimates. In other words, an imperfect dynamic ARIMA model still 
produces less revision than the standard X-11 does.  

34. We have shown that the revision size in seasonal adjustment is dependent on 
a range of volatility measures (STAR, I/C, I/S, TP, Pout) of a series.  STAR is the 
most dominant measure for predicting the revision size.  An empirical non-linear 
relationship between the average percentage revision and STAR can be 
established. 

35. We have identified the condition under which the X-11 with ARIMA extension 
is most likely to have less revision.  This condition is that a time series is relatively 
volatile (ie. with relative large values of I/C and STAR) and strong in seasonality (ie. 
small I/S).  In addition, we also have a better understanding of when the standard 
X-11 is likely to perform better when a suitable ARIMA cannot be found.

36. Our research suggests that  future research for reducing the "end-weight" 
problem should be focused on:

Tuning or relaxing the current ARIMA model selection criteria or 1.
constructing appropriate criteria to identify a suitable model that still 
ensure a reduction in revisions.

Changing the standard X-11 default option if a suitable ARIMA model 2.
cannot be found. eg. using the standard X-11 when I/C and STAR is 
relatively small, otherwise, using the "airline" model.

Choosing an optimal length of data to balance the "global" nature of an 3.
ARIMA model with local dynamics at the end of series.
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Appendix A: The sources of time series and their characteristics

The table below summaries characteristics of the 820 series used in the analysis.

Table A1: The sources of time series and their characteristics
group number of series 

analysed in group
period data span stock/flow

selected 
sub-sample

(1)

97 mixed various various

Labour Force 258 monthly (229)
quarterly (17)

23 yrs
15 yrs

stock

Retail 202 monthly 19 yrs
(1 series 39 yrs)

flow

Building Activity 174 quarterly 17 - 46 yrs flow

Employment and 
Earnings

67 monthly 18 yrs
(1 series 12 yrs)

stock

Meat 42 monthly 22 yrs flow

New Motor Vehicle 
Registration

27 monthly 34 yrs flow

Profits 20 quarterly 16 yrs flow

Stocks and Sales 15 quarterly 12 - 17 yrs stock/flow

Job Advertisements 8 monthly 10 - 26 yrs flow

Wine 7 monthly 24 - 26 yrs flow

Total
(2) 820

Notes:
The selected sub-sample was formed by selecting series with a broad range of characteristics 1.
from the total set of analysed series.
Total excludes the selected sub-sample.2.



Appendix B: Asymmetric weights versus forecasts

Simple example for SeasonalxIrregular (SI) values of a particular month or quarter

Let SIt for t=1,..,n (year) be the data.

Assume a symmetric 3X5 moving average used in the standard X-11 to produce the 
seasonal factors

W-3,0=1/15, W-2,0=2/15, W-1,0=3/15, W0,0=3/15, W1,0=3/15, W2,0=2/15, W3,0=1/15

To get seasonal factors for Sn-2,Sn-1,Sn, X-11 uses asymmetrical weights that only 
involve the recent past but not the future. These are given by

n-2 (third last point)

W-3,1=4/60, W-2,1=8/60, W-1,1=13/60, W0,1=13/60, W1,1=13/60, W2,1=9/60

Sn-2=W-3,1xSIn-5 +W-2,1xSIn-4 +W-1,1xSIn-3 +W0,1xSIn-2 +W1,1xSIn-1 +W-2,1xSIn

n-1(second last point)

W-3,2=4/60, W-2,2=11/60, W-1,2=15/60, W0,2=15/60, W1,2=15/60

Sn-1=W-3,2xSIn-4 +W-2,2xSIn-3 +W-1,2xSIn-2 +W0,2xSIn-1 +W1,2xSIn

n (last point)

W-3,3=9/60, W-2,3=17/60, W-1,3=17/60, W0,3=17/60

Sn=W-3,3xSIn-3 +W-2,3xSIn-2 +W-1,3xSIn-1 +W0,3xSIn

These asymmetric weights can also be looked at as forecasts of the SI's and then 
applying the symmetric moving average.  For the case above we have

SIn+1=0.25xSIn+0.25xSIn-1+0.25xSIn-2+0.25xSIn-3

SIn+2=0.25xSIn+0.25xSIn-1+0.25xSIn-2+0.25xSIn-3

SIn+3=SIn-2

It can be noted that different weighting patterns may be used to different forecast 
horizons, and in the case of  the standard X-11 the forecast is a little bit bizarre.



ARIMA modelling

An alternative to the asymmetric weights is to fit an ARIMA model to the SIt's.  
Consider a simple ARIMA model given by

(1-B)SIt=(1-θB)Et 

where B is the backward shift operator, and θ is an unknown parameter and Et ~N(0,

σ
2
). In this case the SI's are forecasted using a linear combination of the historical 

SI's determined by the differencing and moving average parameter.

The symmetric moving average is then applied to the forecasted SI's.  Because of 
the control over the differencing and moving average parameter a much larger range 
of filters are available.  The ARIMA modelling case could be converted back to 
asymmetric filters.  Generally the asymmetric ARIMA filters would go back a long 
way into the past (with small weights), but this could be controlled by using a "local" 
ARIMA model or using a purely autoregressive model.



Appendix C:  ARIMA "Super Model"

The "super model" is an empirical ARIMA model with fixed parameters.  It has been 
included in this paper to see how a static ARIMA model performs against the 
standard X-11.  To estimate such a model a possible solution is to combine many 
series to find a more suitable general model that can capture collection wide 
characteristics that could not be detected in individual time series.  

The form of the ARIMA "super model" is given by 

monthly (0,1,13)(0,1,0)  (1-B)(1-B
12
)log(Ot)=(1-θ1B−θ2B

2...-θ12B
12−θ13B

13
)Et    Et ~N(0,σ2

O)  

quarterly (0,1,5)(0,1,0)  (1-B)(1-B
4
)log(Ot)=(1-θ1B−θ2B

2−θ3B
3-θ4B

4−θ5B
5
)Et     Et ~N(0,σ2

O)   

The parameters were estimated by maximising the sum of log likelihoods over a few 
hundred time series simultaneously.  They are given in the table below

Table A2: Super model coefficients
lag 1 lag 2 lag 3 lag 4 lag 5quarterly

0.39627 0.14481 -0.0079364 0.66054 -0.19403
lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7

0.32696 0.0043625 -0.019155 -0.011883 -0.017619 -0.015959 -0.021955
lag 8 lag 9 lag 10 lag 11 lag 12 lag 13

monthly

-0.0010558 -0.023753 -0.0019553 -0.0080748 0.72490 -0.23656



Appendix D: Automatic modelling X-12-ARIMA

Five default models

Models chosen by empirical research on a large selection of data.  See (Dagum 
1988) for further details.

Model 1 (0 1 1) (0 1 1) X (1-B)(1-B
12
)log(Ot)=u+(1-θ1B)(1−θ2B

12
)Et Et ~N(0,σ2

O)

Model 2 (0 1 2) (0 1 1) X (1-B)(1-B
12
)log(Ot)=u+(1-θ1B−θ2B

2
)(1−θ3B

12
)Et Et ~N(0,σ2

O)

Model 3 (2 1 0) (0 1 1) X (1-φ1B−φ2B
2
)(1-B)

2
(1-B

12
)log(Ot)=u+(1−θ1B

12
)Et Et ~N(0,σ2

O)

Model 4 (0 2 2) (0 1 1) X (1-B)
2
(1-B

12
)log(Ot)=u+(1-θ1B−θ2B

2
)(1−θ3B

12
)Et Et ~N(0,σ2

O)

Model 5 (2 1 2) (0 1 1)  (1-φ1B−φ2B
2
)(1-B)(1-B

12
)log(Ot)=(1-θ1B−θ2B

2
)(1−θ3B

12
)Et Et ~N(0,σ2

O)

[Note: X signifies mean to be estimated] 

Estimation - exact maximum likelihood

Set of selection criteria

The following set of criteria are used based on forecasting performance, white noise 
properties of the residuals and cancellation of parameters on the moving average 
side with the differencing in the ARIMA model.

(A) within sample forecast error (<15% default)

(B) Box-Ljung Q statistic (>5% default)

(C) over differencing on MA parameters (default <0.9)

Options for "best" model

(A) first model, in order, that passes selection criteria

(B) best model in terms of within sample forecast error that passes 
selection criteria.



Appendix E: Revision measure used in paper

The generic formula for a lag k (k = 0, 1, 2, ..., m) average absolute percentage 
revision from start point t

0
 (t

0
 is greater than the start date of series)

  
to the end 

point T
0
 (T

0
 is less than the end date of series) is defined as: 

The mean absolute percentage revision R
k
 on specific lags is calculated as 

+

=

−
=

− + ∑
0

0

T
t|T t|t k

k
t t0 0 t|T

A A100
R

T t 1 A

k ( 0 ≤ k ≤ 36 for monthly series or 12 for quarterly series) is the lagged period, 
where k=0 represents the 1st estimate, k=1 represents the 2nd estimate etc;

T is the end date of the original series; 

t0 is the start date of the original series minus seven years data (t0 = SD - 84 for 
monthly series or SD - 28 for quarterly series;

T0  is less than or equal to T minus three years data (T0  ≤ T - 36 for monthly 
series or T - 12 for quarterly series);  

At | t + k   is the lag k estimate of concurrent seasonally adjusted series at date t (eg. 
if k=0 and t=Aug 98 it represents the 1st estimate of Aug 98),  the value of the 
seasonally adjusted series at time t calculated from the start date of the series up 
to T0 + k ( when t = T0 ).

          
 At | T   is the "final" value of the seasonally adjusted series at time t,  the value of 
the seasonally adjusted series at time t calculated from the start date of the 
original series to the end date T; 



Appendix F: Diagram showing the performance of the automatic model 
selection within X-12-ARIMA

Figure A1: Automatic ARIMA modelling with outliers turned off.
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Note: the number in a pair of brackets is the number of series. The figure against a 
particular model is the RR of the model against the standard X-11.



Figure A2: Automatic ARIMA modelling with outliers turned on.
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Note: the number in a pair of brackets is the number of series. The figure against a 
particular model is the RR of the model against the standard X-11.



Appendix G: Statistical Analysis

To  explore the possible relationship in predicting revision size with the statistical 
measures, we have analysed five selected measures (STAR, I/C, I/S, TP and Pouts) 
against two revision measures, including R0 (mean absolute percentage revisions),  
and  RR (revision ratios between the R0 from X-11 with ARIMA extension against the 
R0 from the standard X-11). 

0. Descriptive Statistics

Figure A3: Empirical distributions of  measures:  R0, Revision Gains (%), STAR, TP, I/C, I/S, and 
Pouts
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The skewed distributions of R0s, I/C and STAR indicate a logarithmic transformation 
is required when a linear regression analysis is performed.



Figure A4: Box plots of R0, Revision Gains (%), STAR, TP, I/C, I/S, and Pouts
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To compare the distribution properties of the two ARIMA models against the 
standard X-11, we create a binary response variable, Y as:
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Figure A5: Box plots - Airline vs X11 against STAR, TP, I/S, I/C, and Pouts
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Figure A6: Super vs X11 against STAR, TP, I/S, I/C, and Pouts
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Figure A5 and A6 show that  the medians, and inter-quartile ranges of Pout of a 
FALSE and TRUE pair are more or less the same for both the "airline" and "super" 
models. This indicates that Pout is unlikely to have any effect on revision gain. 
However, the medians and inter-quartile ranges of STAR and I/C have 
distinguishable differences. This indicates that STAR and I/C may have certain 
explanatory power.  
 
We use three regression methods (1) binary tree recursive partition regression (2) 
simple linear regression (with non-linear transformation) and (3) logistic regression 
to explore and test the relationships between revision measures (R0, RR or (RR-100) 
)  and the five statistical measures.

Recursive Partition Regression Tree Analysis1.

A tree based recursive partition regression is a statistical technique to explore the 
possible relationships between a dependent variable to its explanatory variable 
(Breiman et. al, 1984). Our primary purpose is to explore the possible relationship 
between: (1) revision R0 and (2) the binary response variable Y with the five 
statistical measures.

Revision measure R0:
The following tree analyses used the revision measure R0 from the standard X-11, 
X-11 with "airline" and "super" models respectively as the dependent variable and 
the five statistical measures as independent variables. The primary split on STAR 
suggests that the STAR value of a series is the best possible measure to explain the 
size of revisions.



Figure A7: X-11 R0 regression tree 
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Note: the length of a vertical branch pair indicates the relative explanatory power of 
the split. 



Figure A8: Airline model R0 regression tree 
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Figure A9: Super model R0 regression tree
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 Binary response variable Y:
The following tree analyses use the binary response variable Y (i.e., the TRUE and 
FALSE factor variables) from Airline and Super model respectively as dependent 
variable and the five statistical measures  as independent variables. The primary 
splits on I/C and then STAR suggest that the I/C and STAR values of a time series 
are the best possible explanatory variables to explain the possibility that X-11 with 
ARIMA extension produces less revisions than the standard X-11.



Figure A10: Airline model Y regression tree 
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Figure A11: Super model Y regression tree 
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Note: the length of a vertical branch pair indicates the relative explanatory power of 
the split.

      2. Linear regression analysis

Linear regression models (with log-trasformation for some measures) are used to 
explore the relationships between the five statistical measures and three revision 
measures, including revision R0 , revision ratios RR (or  revision gains). The skewed 
distributions of R0, STAR and I/C suggest non-linear transformations are needed. 
We take a log-transformation for R0, STAR and I/C in the linear regression analysis.



Revision R0:  
Table A3 shows the results of log R0,  which are derived from the standard X-11, 
X-11 with "airline" and "super" models, regressed on log(STAR), log(I/C), I/S, TP 
and Pout. All estimated coefficients are significant at the 5% level and the fitness 
measure R

2
s show that the model adequately explains the variations of R0 from the 

five explanatory measures.

Table A3:  Regression model  R0 = a + b log(STAR) + b log(I/C) + c (I/S) + d (TP) + e (Pout) 

R0 of X11 R0 of Airline model R0 of Super model

coef. value t-value coef. value t-value coef. value t-value
(Intercept)    0.3016    5.5605*   0.2130    4.0529*    0.1451    2.8533*
log(STAR)    0.9497 121.0524*   0.9407 123.7473*    0.9391 127.6983*
log(I/C)   -0.0384   -3.6700* -0.0673   -6.6378*   -0.1127 -11.4862*
I/S   -0.2112 -26.1683* -0.2083 -26.6345*   -0.1812 -23.9476*
TP    0.0151    3.4165*   0.0152    3.5561*    0.0171    4.1286*
Pouts   -0.0418   -9.7437* -0.0373   -8.9757*   -0.0388   -9.6388*

 R
2 0.9566 0.9581 0.9602

Note that the sign of the estimated coefficients are the same across each R0. This 
indicates that  the five explanatory measures have the same effect on R0, although 
with different magnitudes. STAR, TP positively contribute to the revision measure R0

,  whilst I/C, I/S, and Pouts negatively contribute to the revision measure R0. These 
can be interpreted as

the more volatile (STAR), the larger the revision;�

the more turning point (TP), the larger the revision;�

the less movement in trend than in irregular (I/C), the smaller the revision;�

the less movement in seasonal than in irregular (I/S), the smaller the revision;�

the more data points modified by X-11 as outliers(Pouts), the smaller the �

revision.
All the above results are intuitive and provide insightful information about how the 
five measures contribute to R0.  Although all five measures have a significant effect 
on revision R0, STAR is the most dominant explanatory measure.

Revision gain (RR - 100):
Table A4 and A5 show the results of regression analyses of revision gain, RR - 100, 
on four statistical measures for the "airline" and "super" models. The results 
demonstrate that I/C is the most significant measure to explain the variation of 
revision ratios RR (or revision gains). However, the R

2
 statistics indicate that the 

models used do not necessary fit well. 



Table A4: Linear regression using revision gain as response variable: Airline model
Fitted Model Coefficient (t Value) R

2
 

revision gain =a+b log(star) a:  -5.061    (-12.823*)
b:  -1.191     (-4.158*) 0.0218

revision gain =a+b log(I/C) a:   -5.135     (-16.974*)
b:   -2.873     (-7.649*) 0.0702

revision gain =a+b (I/S) a:   -5.218     (-3.874*)
b:   -0.222     (-0.738) 0.0008

revision gain =a+b log(star) +c log(I/C) a:   -4.264      (-10.715*)
b:   -0.935      (-3.342*)
c:   -2.714      (-7.212*)

0.0834

revision gain =a+b log(star) +c log(I/C) + d (I/S) a:   -4.4736    (-3.4000*) 
c:   -2.7215    (-7.1744*)  
b:   -0.9350    (-3.3413*)  
d:    0.0458     (0.1672)  

0.0835

Figure A12: Airline model - STAR contribution to RR - 100
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Figure A13: Airline model - I/C contribution to RR - 100
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Figure A14: Airline model - I/S contribution to RR - 100
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Figure A15: Airline model - Estimated revision gain
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Table A5: Linear regression using revision gain as response variable: Super Model
Fitted Model Coefficient (t Value) R

2

revision gain =a+b log(star) a:  -0.857    (-1.609)
b:  -1.625     (-4.203*) 0.0223

revision gain =a+b log(I/C) a:    0.337     ( 0.916)
b:   -7.265     (-15.898*) 0.246

revision gain =a+b (I/S) a:  -12.806   (-7.194*)
b:    2.220     ( 5.925*) 0.043

revision gain =a+b log(star)+c log(I/C) a:   1.228      (2.531*)
b:   -0.955      (-2.802*)
c:   -7.101      (-15.483*)

0.254

revision gain =a+b log(star)+c log(I/C)+d (I/S) a:  -12.175     (-8.000*)
b:  -0.981        (-3.031*)
c:   -7.595       (-17.310*)
d:    2.928        (9.240*)

0.328

* indicates t statistics are significant at the 5% level.



Figure A15: Super model - STAR contribution to RR - 100
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Figure A16: Super model - I/C contribution to RR - 100
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Figure A17: Super model - I/S contribution to RR - 100
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Figure A18: Super model - Estimated revision gain
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From the above linear regression analyses, we conclude that the "airline" and 
"super" models are likely to have less revisions than the standard X-11 has when I/C 
and STAR increase. The positive coefficients of I/S show that the I/S has a positive 
effect (although it is not significant for the "airline" model). This indicates that the 
implied seasonal component model embedded in the both ARIMA models may not 
perform as well as the X-11's seasonal asymmetric filter when a series has relatively 
less seasonal pattern changes comparing to its irregular. The significant positive I/S 
coefficient for the "super" model also shows this static model performs worse than 
the more dynamic "airline" model for the seasonal component.  In comparison with 
the standard X-11 on the 820 series, the net gain from an ARIMA model comes from 
better trend forecasts. This gain is usually larger than the loss from its poor seasonal 
forecasts that occurs when the volatility of a series increases.

 3. Logistic Regression Analysis
Logistic regression analysis is often used to investigate the relationship between a 
discrete response variable and a set of explanatory variables (Collett,1991). For the 
created binary response variable, Y (see definition on page 25), a logistic regression 
model with the 4 statistical explanatory measures allow us to robustly test which 
explanatory measures significantly affect the probability of the response variable.

Statistical results of logistic regression models are reported in Table A6, which 
suggest that I/C and STAR significantly affect the probability of the binary response 
variable Y.

Table A6: Logistic Regression of binary Y on four explanatory measures
Method Intercept

(|t|)
Log(STAR)

(|t|)
TP
(|t|)

I/S
(|t|)

Log(I/C)
(|t|)

Airline 1.3046
(2.59)*

0.2954
(2.84)*

0.0548
(0.91)

-0.1155
(1.18)

0.9142
(6.53)*

Super 2.6411
(5.18)*

0.4339
(4.48)*

0.0504
(0.91)

-0.6105
(5.98)*

1.7503
(10.98)*

* indicates statistics are significant at the 5% level.

From the above logistic regression analyses,  the positive coefficients of log(STAR) 
and log(I/C) indicate that the two ARIMA models are likely to have a higher 
probability of smaller revision than the standard X-11 has when I/C and STAR 
increase. The negative coefficients of I/S indicates that the two ARIMA models are 
likely to have a lower probability of smaller revision than the standard X-11 has 
when I/S (although it is not significant for the "airline" model) increases. These 
results are consistent with the linear regression (with transformation) analyses. 


